
Informatica Economică vol. 13, no. 2/2009

68

Quorums Systems as a Method to Enhance Collaboration
for Achieving Fault Tolerance in Distributed Systems

Ioan PETRI

Babeş-Bolyai University, Business Information Systems Dept., Cluj-Napoca, Romania
ioan.petri@econ.ubbcluj.ro

A system that implements the byzantine agreement algorithm is supposed to be very reliable
and robust because of its fault tolerating feature. For very realistic environments, byzantine
agreement protocols becomes inadequate, because they are based on the assumption that
failures are controlled and they have unlimited severity. The byzantine agreement model
works with a number of bounded failures that have to be tolerated. It is never concerned to
identify these failures or to exclude them from the system. In this paper, we tackle quorum
systems, which is a particular sort of distributed systems where some storage or computations
are replicated on various machines in the idea that some of them work correctly to produce a
reliable output at some given moment of time. Thus, by majority voting collaboration with
quorums, one can achieve fault tolerance in distributed systems. Further, we argue that an
algorithm to identify faulty-behaving machines is useful to identify purposeful malicious
behaviors.
Keywords: fault tolerance, quorum systems, distributed computing, byzantine faults.

Introduction
Many distributed systems are designed to

support resource sharing. On its traditional
architecture, Internet is built to be a network of
computers as it is composed by many networks.
Networks of computers are everywhere and they
are communicating and coordinating by message
passing. Mobile phone networks, corporate
networks, factory networks, campus networks,
home networks, in-car networks either separately
or in combination share essential characteristics.
A system with networked components which
collaborate in their actions needs to have the
ability to work well even when the number of
users is changing and they are not reliable.
Reliable users’ number can change due to their
collaborative behavior, some of them behaving as
faulty ones or because new users join the
network.
Distributed systems are built to tolerate failures.
In the same time they should be designed to be
robust and aligned with the newest discovered
standards. Finding the faulty entities of such a
system might be compared with the tenant
discovering problem: any authority shouldn’t be
contacted before the landlord isn’t sure the
tenant really exaggerates in consuming resources
and not paying the costs. Modern distributed
systems are designed on the fault tolerance
principle. They have self-checking mechanisms
to verify system status; as well they are able to
take suitable actions to prevent failures.

Replication is one such mechanism. With
replication, either one piece of data is distributed
to several storage locations, or some computation
is distributed to several servers.
Many distributed systems are concurrently.
Different actions happen in the same time. For
data replication many processes will take place in
the same time. This concurrency is the cause of
many bugs. Failures fall in the following
categories, from the sources that originated them
[2]:
• Hardware failures, like battery loss, disks loss
and hardware generations changeability. They
can be solved physically and do not request the
system to be redesign.
• Software failures represent the most important
problem to solve inside systems. Many studies
proved that even after lots of testing procedures,
software is not out of unplanned problems. New
programming languages offer debugging and
runtime tools as very important steps for tracking
down the errors. Also replacing the old manner of
object reference with the shadowing technique of
building object improves the software
performance and removes failure risks.
• Other sources of failure account to more than
one-third of system’s failures. They involve
planning, maintenance, backups and
environmental factors like power outages, air
conditioning or heating failures
To avoid such failures, virtual synchrony has

1

Informatica Economică vol. 13, no.2/2009

69

been introduced. Virtual synchrony simulates the
system as it wouldn’t use replicated data or
concurrency even if it doing so. It substitutes
groups of entities with single entities and
improves all designed performances.
On the same reasoning, membership is
considered a distributing important feature. It
identifies a set of members (system entities) with
common features to build a community that is
agreeing on something [6]. Membership is an
important feature when working with replication,
because it indicates whether a machine is part or
not of a selected quorum.

2 Approaches for fault tolerance in distributed
systems
Computer systems fail in different situations. The
reasons of failure are changing from hardware to
software; many times programs are not finishing
their intended computation. On distributes
environments, a failure is partial because while
some components are failing while others
continue to function. To handling all this failures
different techniques are introduced:
• Detecting failures; those failures which can be
detected and for those which cannot be detected,
the solution is to manage intended processes in
the presence of them
• Masking failures; those failures that can be
detected and can be hidden or the severity can be
reduced.

o Message that can be retransmitted when
they fail to arrive
o Files that can be written to a pair of disks
to replace the one which is corrupted

• Tolerating failures; most of Internet services
are having failures but they can be tolerated
instead of being detected and hidden.
• Recovery from failures; the mechanism of
rollback is implemented to cover any server
crashes. When a failure will occur a data
inconsistent state will appear.
Software architecture has different structured
levels. Modules are used as a single computer.
Software architecture is expected to intermediate
services offered and requested between processes
located in the same or different computers. A
server is a process that accepts requests from
other processes. A service can be provided by
one or more servers which interfere with client
processes in order to maintain the consistency of
service.
The client-server architecture represents a
structure where client processes interact with
individual server processes in order to access the

shared resources. Servers can in turn be clients of
others servers: a web engine is behaving as a
client and as a server in the same time: it
responds to queries from browser clients and it
runs web task as a client.
Peer to peer architecture uses all processes
inside an interacting cooperation. Every process
is represented as a peer without any difference
between client and server processes or the
computers that they run on. Applications are built
with a large number of peer processes running on
separate computers. They use communication
patterns. Each object is replicated in several
computers to further distribute the load and to
provide protection against disconnection. The
peer to peer architecture is placing individual
objects and maintains replicas among many
computers [2].
Distributed systems always involve an
operational list of possible computers. Such list
requires a scan of all available peers and also
very complex operations of monitoring the
processes that run on the system. The purpose of
scanning is to identify a replica. A replica inside
distributing systems can store any important
parameter or set of parameters (variable values,
timestamps). A distributing system static model
contains an unchangeable list of members. At a
particular timestamp only a subset of these
members can be used – which is a quorum. Inside
a static membership model, every process p has
details about all other running system processes.
The information that usually is missing for each
process is the list of operational processes that
run inside the system. The requests that a process
p might send to all other processes are referring
to various dysfunctions. The main objective for a
process request is to get back a majority of the
process responses. Reaching the majority
involves member contract on a particular request.
A process majority will gather all the positive
feedbacks received from system entities. Usually
a request is deployed during an operation of
reading or writing. Both of them need to reach
the majority of processes instead of satisfying
some performance standards.
Read and write operations imply a set of
particular processes. In order to accomplish the
read and write operations, it is required to
execute all the processes with a minimum
number of replicas involvements. The usability is
locked by the condition that some minimum
number of replicas need to be read (QR) and
some minimum number of copies to be updated
(QW) and both of them should be bigger than the

Informatica Economică vol. 13, no. 2/2009

70

system size(n):
QR + QW > n

e.g. QW = n – 1, QR = 2 => QW + QR > n
QW, QR represent read and update (write)
processes that run inside a quorum architecture.
The particular formula allows the minimum
condition for the process in updating variables
even if one of the groups is faulty. Any read will
discover the most current update. So a process p
executes an update for the variable x how it
follows:
1. Attempts a read operation to check and find
the most current updated values of the variable
with the associated time. A RPC read request for
all replicas will take place. Remote Procedure
Call (RPC) is a data flow between caller and
provider that involves data movement between
server and networks. The chosen version of x will
be the one with the newest timestamp and with
the associated value.
2. Process p establishes a timestamp when the
newer version for variable x will be implemented.
The new value for time variable will be chosen as
long as it is the larger than anyone read from the
group.
3. Sends another RPC to at least QW members
making a news in preparing them to update x.
4. It receives a response from the group with
acknowledges for the new value. Process p looks
to see if it has a write quorum. If the number of
acknowledgement is QW or larger, p allows the
update to commit, otherwise it will be aborted,
meaning that the members are not changing the
replica value.
Condition: A system with QW<n is considered
fault tolerant. This suppose that if p wants to read
x, then it has to send RPC to some other
processes because QR>1.
Remark: Local copies for variable x are built by
copying a value from the volatile region data
storage to a temporary area. The volatile storage
area is not a very safety data storage region. If a
failure happens, then all the information will be
lost. The information will be stored on temporary
data storage and then transferred to a persistent
storage location.

3 Evaluation of the quorums approach
A very compatible protocol is continuously
developed to cover any community unpredictable
malicious processes. The general agreement
problem involves bounded failures processed
inside a tolerated environment. Bounded defines
particular process actions that derives from any
failure and it can produce a randomly unexpected

behavior. Byzantine agreement algorithm is used
as a future security protocol template. This model
assumption is based on a limited number of
failures and the severity of the failure is
unlimited. Our goal is to identify the faulty
participants.
The general agreement basic protocol finds a
number of generals that receive an order to attack
from a superior. The mandatory internal
requirement is synchronization. For the decision
to be taken, they need to exchange messages in
order to find other generals statuses from the
process. Encountered statuses are to attack or not
to attack. There are i rounds of communication
and all participants are synchronizing themselves
to attack at the round i+1.
The main decision of attacking is adopted when
all the loyal generals will have the attack status.
The siege will when all loyal generals will have a
non attack status. A traitor status is any free
attitude to lie about the own state or to send any
additional message. Faulty generals can never
forget the message to a loyal general. After the
first round of changing messages, comes a
second round of voting. All participants have
their own opinion about the other statuses.
Clock synchronization is a request of the process
because the algorithm has to limit its execution to
a timestamp period.
Lamport at al. proved that at most t traitors inside
the community at least 3t+1 participant can be
accepted. This implies that no less then 2t+1
loyal general should be present in order to
exclude the messages delivered by traitors. For t
faulty participants a set on t+1 round it is
required for changing messages.
The protocol is assuming that all participants
know about other running processes. It has a very
low performance in finding actually the number
of faulty participant inside the process. There is
an idea about this failure but actually no process
is interested to identify those faults.
Replication interference is used to increase the
complexity of byzantine agreement algorithm and
to have a closer applicability on what nowadays
technology requests.
The byzantine agreement quorum replicates an
object for k2 nodes. All the nodes are assigned
representing inside a (kk ×) system. A read
quorum is implemented through a row as well as
a column is a writing quorum.
The figure 1 shows a quorum with n=120
elements, d=12 columns, h=5 bands, r=2 rows
per band. Based on before analyses, we can
consider the column as being writing quorums

Informatica Economică vol. 13, no.2/2009

71

and the rows to be reading quorums.

Fig. 1. Grid Quorum system

The limited byzantine agreement model is
applied on a structure of faulty servers using data
replication. Replicating data through a set of non-
trusted servers is solved by using byzantine
agreement algorithm to update read and written
values [7].

3.1 The quorum approach
For our approach, a community is considered a
quorum. Quorums have appeared from the
necessity of a closer applicable security around
byzantine agreement model. A default quorum is
designed for a population of }{ 2 nPPP = a

set of servers with p2∈δ a set of subsets of P.
Condition1: Each Q belonging to δ is a quorum
(δ∈Q).
Condition2: Every subset Pi is an interactional
entity.
Process: A variable is replicated inside the
system. A client can be a reader or a writer and it
has assigned a particular t timestamp. Every
involved server Pi stores local copies of xi and ti.
• WRITE (to write x); A quorum is chosen by a
writer. A writer can be any server or set of
servers from P. the write quorum evolves as
follows [1]:
o The writer increments the timestamp
indicator t and sends (write, x, t) sets to all Pi
from Q;
o A set of (write, x, t) having t > ti is received
where t is the newest timestamp assigned for
writing by the most recent process and ti is the
last timestamp of the process before receiving
this request of writing,
o server Pi sets (xi, ti) <- (x, t) and returns an
acknowledge message.

• READ (to read x): A quorum is chose by a
reader. A message of read is sent to all Pi from Q.
The read quorum evolves as follows:
o Pi returns (value, xi , ti)

o the reader waits the values from all servers
from Q
o Selects the one with the highest timestamp.

3.2 The byzantine quorums
A byzantine quorum is a special case of a quorum
system that tolerates byzantine failures in a
random population of servers’ subsets with a
property of interconnectivity. The Premise is that
are enough correctly servers to guarantee
consistency of the replicated data.
On byzantine quorum system, the process uses a
central server element (the same time we can
consider it as client) which is evaluated on its
default behavior. All servers respecting particular
specifications are considered to be correct. Any
other deviated behavior is considered faulty.
The assumption is a population β which contains
all fail prone systems and a subcategory B
belonging to β. The only way a client can get the
correctness of the accessed server from a quorum
is to access every server. Multiple quorums
operations are allowed [3]. The basic operations
of reading and writing on quorums are the same
as for the traditional quorums. Systems are often
failing. Most of failures are partial and can be
detected. To hide failures byzantine quorums
deploys the following types [3]:
1. Masking quorum systems: which are
dissemination quorum systems and opaque
masking quorum systems? On masking quorums
system load becomes a very important issue.
Quorum system load over n servers have a load
of ()

n
O 1 . A masking quorum system for a fail

prone system δ delivers two main properties:
• M-consistency:

21212121 \)(:,, BBQQBBBQQ ⊄∈∀∈∀ δ

• M – Availability:
φδ =∈∃∈∀ QBQBB :

A dissemination quorum system for a fail prone
system δ delivers two properties:
• D-Consistency:

BQQBQQ ⊄∈∀∈∀ 2121 :, δδ
• D-Availability:

φδδ =∈∃∈∀ QBQB :
The central idea of masking quorum system is to
mask any faulty behavior of data repositories.
Figure 2 depicts a masking quorum system. On
the figure 2,
B - Represents random set of faulty servers
Q1 - is a quorum used to write one arbitrarily x

Informatica Economică vol. 13, no. 2/2009

72

variable
Q2 – is a quorum used to read one arbitrarily x
variable

Fig. 2. Masking Quorums system

A dissemination quorum system involves clients
which can operate modifications on the faulty
servers. On quorum’s auto-behavior there is an
internal process of self-verifying written replicas.
They will be transmitted to all reading operation
from the system, despite any arbitrarily failure of
some servers.
Malicious intentions can affect the algorithm
status. Clients can leave an operation to an
inconsistent level, where only few of the steps are
completed. For instance a client due to its
intention of writing on x variable only sends
notification to processes to announce its
following operation without completing the
process. If any failure of the system is recorded
the cause won’t be the involved server any more.

3.3 The byzantine fault tolerance
Byzantine fault tolerance represents any robust
behavior that prevents system’s failure.
Traditional byzantine tolerant behavior
accommodated a maximum number of t traitors;
for any t numbers of traitors at least 2t+1 needed
to be honest peers and t+1 steps of message
changing. Fault tolerance defines the same
robustness showed on the traditional system
capacity of supporting reliable reading and
writing operations.
A fault is defined to be a physical defect that can
happen in different parts of a system. A fault is
considered to be mostly an error because an error
is the beginning of every failure. Every failure
has a number of attributes like cause, duration,
nature, extend, value and also it has a type. A
permanent fault continues to exist until it will be
fixed and a transient one occurs and then
disappears. A fault that disappears with an

identified frequency is called intermittent failure.
Because of their multiple inconveniences many
techniques to deal with fault have been deployed.
• Fault avoidance prevents the occurrence of
faults, e.g. Quality control: design review,
component screening.
• Fault masking prevents faults from
introducing errors e.g. error correcting codes,
majority voting.
• Fault tolerant system is a system that
continues to function correctly in the presence of
failures. Such a system includes: fault detection,
location, containment and recovery.
Inside a particular system failures take place with
a specific rate. For any ℓ rate a mean time to
failure (MTTF) parameter is established. This
parameter defines the expected time when system
will operate before the first failure occurs;
MTTF=1/ ℓ;
On the failure context there are many techniques
for redundancy in order to allow fault detection,
fault masking or fault tolerance: [11]
• Forward recovery helps the system to continue
the operation with the current system state even if
it may be faulty.
• Backward recovery uses previously saved
corrected state information at the starting point
after failure. Avery time the process begins a
copy of the initial data is stored. A record with all
transactions are made a subsets are saved at
specific points. This recovery technique uses
check pointing when the system roll back in order
to recover from failure after repair. The state of
the first process is recorded on a double storage
module. There is also an analog procedure of
checkpoint message when the secondary process
gets its current state from the most recent
message. The persistent technique implements
the states as transactions and undoes any recent
uncommitted state.
• Use of recovery blocks
o Execute critical functions
o Test the output after each execution
o Invoke the acceptance test upon detection of
failure
o Recovery blocks that works with a watchdog
timer to initiate processes based on previous
acceptable results

In the byzantine fault tolerance, reading and
writing replicated data becomes a very
challenging operation. Any random x variable
should be read / written anytime, by different
processes against any deviated behavior. An
unpredictable server failure or a client failure

Informatica Economică vol. 13, no.2/2009

73

might need to be covered. The process is as
follows:
• With the newest timestamp, a process p can
sent notification about its intention of updating
value of x variable. After this notification it
expects feedback from all the interested
processes.
• Process p receives a respond from the group
with an acknowledgement for the new value.
• Process p looks to see if it has a write quorum.
If the number of acknowledgements is QW
(updating quorum) or larger, p allows the update
to commit, otherwise it will be aborted, meaning
that the members are not changing the replica
value.
The condition for the byzantine fault tolerance to
happen is QW<n, QR >1
Any fault tolerant system will have QW
(updating x that usually is using a minimum
number of copies) smaller than n. If p wants to
read x it has to send RPC to some other process
because QR>1.
Fault tolerance purpose is to hide as many as
possible faulty servers. The following steps
happen:
1. Read/Write objects are replicated to each n
server from the system. Sometimes read methods
are called queries. Usually we can deal with
operations and queries.
2. A client performs operations to an object by
issuing requests to a quorum of servers.
3. A server receives the request and then
invokes a method on its object local replica. Each
time the server invokes an object a new object
version will result. The object version together
with its timestamp is recorded by server every
time.
4. All these records are store to an array and the
replica history is built.

Client process:
Client role is to interact with servers. Interaction
process can have from one to many steps of
performance. The routine scenario releases one
step client-server communication. To a higher
level of complexity a process is never completed
in one level because the client is facing during
the communication process with failures.
Clients are sending operations and then receive
answers from a service. On the server are running
all the processes that are requested by any client.
A server access is based on object history set.
This object history set contains lots of data that
actually is used to classify object versions that a
client has to perform on servers. The quorum of

servers is the only entity that posses the latest
object version.

Server process:
Server mostly validates the object history set by
comparing the timestamps of an object. If the
timestamp for validation is not the latest one than
the object validation won’t pass. For opposite
situation server will update himself the object
timestamp and will start building an answer for
the method. During the process lots of
inconveniences are revealing. Any server failure
brings an inherent inaccessible quorum. This
situation gets the client in the position of
checking for additional servers in order to collect
a quorum of responses (finding a live quorum).
As every operation is bounded by a timestamp
only an honest client behavior will complete an
operation because the servers are expecting the
operation to have the same timestamp. This
algorithm gives a truthful state for system
because any malicious client that wants to force
on server object with the same timestamp is
excluded [4].

3.4 The quorum proactive recovery
Byzantine faulty replicas can be replaced and
tolerated using a proactive recovery [10]
mechanism. Based on the assumption that it is
very low possibility for individual replicas to fail
simultaneously, a quorum system keeps all its
performances if it uses recovering replicas
proactively.
The system will suffered no performance
consequences as the recovering proactively
mechanism uses a detection algorithm which
identifies those replicas with a long time
recovery. To solve all the implications of
recovery from Byzantine faults it is needed:
• Proactive recovery is based on the
assumption that a replica even it is faulty can
behave properly and many times it cannot be
identified. Recovering replicas proactively and
periodically excludes every risk of unidentified
replicas. For its default applicability proactive
recovery assumes that all the recovered replicas
are non faulty as well the recovery mechanism
will never produce faults instead of safety.
During its recovery, replica should not be
excluded from the process it was involved.
• Fresh messages protect a replica to be
controlled by an attacker who knows the key for
authentication. Every replica should be able to
check if a message is fresh. It should exclude and
reject all old messages as well as it should be

Informatica Economică vol. 13, no. 2/2009

74

able to prove that a message is authentic or not.
• Efficient state transfer improves the system’s
performance but it is harder to be applied with
Byzantine faults. System’s local copies are
checked in order to determine all up to date
portions of replicas. Any missing replica should
be recovered using correct replicas.
The proactive recovery algorithm uses state
machine replication. Several replicas that host a
service are replicated on different nodes.
Traditional operations allowed on the replicated
service can be replaced with particular
computations. Replicas are identified and they
maintain a copy of server state. Different
operations are performed using the replicas
internal role. The property of faulty comes from
algorithm’s inconsistency to support impersonate
replicas. Any other replicas that follows the
algorithm are non faulty.
Requirements:
- replicas need to start in the same state
- replicas need to be deterministic(the operation
results must be the same every time)
Algorithm: All non faulty replicas execute
operation on the client requests. All the
operations have same type and same order. After
the request the client waits for f+1 replies from a
population of 3t+1. The algorithm goal is to
guarantee that all non faulty replicas agree on a
total order for the execution of requests despite
failures [10]. For the algorithm accomplishment
the backup mechanism is used. Replicas are
moving from a node to another, passing through
different system configurations called views. A
view is holding one primary replica and the
others are backups. This procedure increases the
system’s performance and security. Using views a
client will always be able to check if a replica is
faulty as well as it will always find the correct
replica value. The client will request operations.
Every operation will be assigned with a number.
When a fault is met the view changes and it will
choose another primary replica.

3.5 The quorum replication
The byzantine algorithm tolerates faults. It makes
no assumption about the faulty components, so it
is supposed to tolerate many malicious attacks.
The recent work proves that an invisible
synchrony between entities is desired to solve
byzantine algorithm limits. To cover big amount
of failures the faulty components needs to be
detected. Based on this, it had been discovered
that for any asynchronous system this failure
detector can’t be very accurate, sometimes

misclassifying a replica as a faulty [4].
The traditional algorithm is based on the
assumption that no more than 1/3 of the group
can be faulty for the algorithm correct execution.
If any of non faulty replicas are considered faults,
the attackers will reach the whole control of the
replica without changing any detectable attribute.
All faults will be excluded from the group and
the number of non faulty replicas will get lower.
The algorithm efficiency will decrease.
The Fleet algorithm [4] affords n>3 replicas to
tolerate f faults, with the rule that malicious
clients can have the knowledge of correct
replicas. For this implementation, Fleet requires
n>4f replicas. The same algorithm introduces a
mechanism of finding the number of faulty
replicas. A very pessimistic scenario assumes that
clever attackers can transform dead replicas to
behave correctly until the attacker controls more
than f. In this case no algorithm can do anything.
For higher level Byzantine fault tolerance has
been completed with abstract specification
encapsulation. All the replicas are running on the
same service implementation and they are
updated in a deterministic way.
A fixed array of pairs is established containing an
object and a generation number. Each object is
identified with a particular identifier. The
generation number is incremented every time the
entry is assigned to a new object. The algorithms
works with 4 particular types of objects: files,
directories, symbolic links and null objects.
Every null object indicates which object is free.
Any other non null object will have meta-data
that includes attributes.
Algorithm: A procedure is called by a client to
invoke an operation on the replicated service.
The client side is carried by the procedure and it
will return the result when enough replicas have
responded. When an operation is implemented an
up call for execution of procedure is used.
A central BaseClient and BaseReplica will be
built to improve system’s tolerance. Any others
entities involved will have to consult this base
entity. Every time a replica is faulty the system
will roll back and check the previous replica from
BaseReplica. [10]

4 Conclusions and Future Work
Fault tolerant algorithms have been theoretically
analyzed and practical improved but they never
give a higher efficiency than t traitors from a
community of 3t+1.
This paper position is to find a trustful algorithm
that survives to a higher number of failures. On

Informatica Economică vol. 13, no.2/2009

75

the server’s side many failures can happen. These
failures belong to an internal process managed by
an authority responsible with the server's
consistency and reliability. Variable statuses can
replicate themselves to different machines
helping faults to spread over communities. A
quorum is a community where every machine
status has to be identified instead of a safety
allocating resource environment.
For a better understanding, the problem can be
dropped to a complex scenario where different
statuses with a different replica failing level can
be analyzed.
Servers can hold faulty replicas. They refuse to
response with the right replica statuses starting a
malicious process of colluding. Colluding
represents any unpredictable behavior of
responding with inappropriate set of replicas
(values and timestamps (xi, ti)). Every quorum
entity will vote at a certain process level and
every fault response will examine algorithm’s
performances. Most algorithms are fault tolerant
with an established number of deprecated
behaviors. They provide rated outputs while
identifying the fault replicas from the
community.
Quorum analogies were made from the
prospective of finding a suitable research area to
implement a security based algorithm. The new
algorithm we intend to develop tries to improve
the previous algorithms’ performances with an
operational probability.

Acknowledgement
This work is supported by the Romanian
Authority for Scientific Research under contract
IDEI_573

References
[1] K. P. Birman, Reliable Distributed Systems,
Technologies, Web Services and Applications,
Springer Science & Business Media , LLC, 2005.
[2] G. Coulouris, J. Dollimore, T. Kindberg,
Distributed Systems, Concepts and design, Pearson
Education, 2005.
[3] D. Malkhi and M. Reiter, “Byzantine Quorum
Systems,” AT&T Labs – Research, Florham Park,
USA.
[4] C. Cachin, “Security and Fault-tolerance in
Distributed System,” IBM Zurich Research Lab,
ETHZ, 2007.
[5] M. AbdElMalek, G. R. Ganger, G. R. Goodsony
and M. K. Reiter, “FaultScalable Byzantine
FaultTolerant Services, Jay J. Wylie 14,” In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pp. 59–74,
Brighton, UK, 2005.
[6] D. Malkhi, M. Reiter and A. Wool, “The load and
availability of Byzantine quorum systems,” SIAM
Journal of Computing, vol. 29, no. 6, pp. 1889-1901,
April 2000.
[7] L. Lamport, R. Shostak and M Pease, “The
Byzantine Generals Problem,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol.
4, no. 2, pp 382-401, 1982.
[8] F. Cristian, “Understanding fault-tolerant
distributed systems,” Communications of the ACM,
vol. 34, no. 2, pp. 56–78, 1991.
[9] Y. Amir, B. Coan, J. Kirsch and J.Lane,
“Byzantine replication under attack,” Technical
Report CNDS-2008-1, Johns Hopkins University,
www.dsn.jhu.edu, March 2008.
[10] M. Castro and B. Liskov, “Practical Byzantine
Fault Tolerance and Proactive Recovery,” ACM
Transactions on Computer Systems, vol. 20, no. 4, pp.
447, November 2002.
[11] F. C. Gärtner, Fundamentals in Fault Torelance,
Darmstadt Univ. of Technology, Germany.
[12] T. C. Bressoud and F. B. Schneider, “Hypervisor-
Based Fault-Tolerance,” Isis Distributed Systems,
Cornell University.

Ioan PETRI has graduated the Faculty of Economics and Business Administration,
Business Informatics dept from Babes-Bolyai University of Cluj-Napoca in 2007.
On his doctoral orientation in Service Collaborative Systems develops a secured
collaborative architecture that is expected to increase previous performances. He is
interested in programming languages and databases as well as he particularly enjoy
using new Java development frameworks.

